Modelos de elementos finitos para el análisis de grietas por fatiga

Brayan Darío Rosero, Hernán Dario Patiño

Resumen


Las máquinas y estructuras están compuestas por elementos que son sometidos a fatiga, uno de los factores que determinan su vida útil. La vida a fatiga se divide en tres etapas: iniciación o nucleación de la grieta, propagación de la fisura y la falla. Es muy importante el estudio de la etapa de iniciación de grietas por fatiga, ya que ésta puede llegar a representar un 90% de la vida total del componente. En la actualidad, el modelado por elementos finitos [FEM] depende en gran medida de la densidad del mallado alrededor de la punta de la grieta, del remallado (si se requiere), del tipo de análisis, bien sea bidimensional o tridimensional, lo que implica un alto costo de simulación computacional. En el presente trabajo se estudian los diferentes modelos de elementos finitos y ensayos experimentales para el análisis de grietas por fatiga, teniendo en cuenta las diferentes metodologías, geometrías de las piezas y confiabilidad de los datos obtenidos, entre otros.

Palabras clave


Elementos finitos; fatiga; grieta; matrices nodales; simulación computacional.

Texto completo:

Sin título

Referencias


Andrade, A., Mosquera, W., & Vanegas, L. (2015). Modelos de crecimiento de grietas por fatiga. Entre Ciencia E Ingeniería, 9(18), 39-48.

Anes, V., Reis, L., Li, B., & Freitas, M. (2014). Crack path evaluation on HC and BCC microstructures under multiaxial cyclic loading. International Journal of Fatigue, 58, 102-113.

Bairstow, L. (1911). The elastic limits of iron and steel under cyclical variations of stress. The Royal Society, 210, 35-55.

Bea, J., Doblaré, M., & Gracia, L. (1999). Fiabilidad de elementos metálicos en crecimiento de grieta por fatiga aleatoria mediante elementos finitos probabilistas y modelos B. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 15(1), 85-112.

Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601-620.

Bravo, P., & Preciado, M. (2002). Efecto de la deformación plástica inicial en el comportamiento frente a deformaciones cíclicas de un acero inoxidable endurecido por precipitación. En: VIII Congreso Nacional de Propiedades Mecánicas de Sólidos (pp. 235-241): Gandia, España.

Broek, D. (1982). Elementary engineering fracture mechanics [3 ed.]. Boston, MA: Kluwer.

Chan, K. (2010). Roles of microstructure in fatigue crack initiation. International Journal of Fatigue, 32(9), 1428-1447.

Citarella, R., Lepore, M., Perrella, M., Sepe, R., & Cricrì, G. (2016). Coupled FEM-DBEM simulation of 3D crack growth under fatigue load spectrum. Procedia Structural Integrity, 2, 2631-2642.

Daves, W., Kubin, W., Scheriau, S., & Pletz, M. (2016). A finite element model to simulate the physical mechanisms of wear and crack initiation in wheel/rail contact. Wear. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0043164816301120

Deng, H., Li, W., Sakai, T., & Sun, Z. (2015). Very high cycle fatigue failure analysis and life prediction of cr-ni-w gear steel based on crack initiation and growth behaviors. Materials, 8(12), 8338-8354.

Dunne, F., Wilkinson, A., & Allen, R. (2007). Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. International Journal of Plasticity, 23(2), 273-295.

Ewing, J., & Humphrey, B. (1903). The Fracture of Metals under Repeated Alternations of Stress. The Royal Society, 200, 241-250.

Formica, G., & Milicchio, F. (2016). Crack growth propagation using standard FEM. Engineering Fracture Mechanics, 165, 1-18.

Fries, T., & Belytschko, T. (2010). The extended / generalized finite element method : An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 84(3), 253-378.

Gómez, M., Castejón, C., Corral, E., & García, C. (2016). Analysis of the influence of crack location for diagnosis in rotating shafts based on 3 x energy. Mechanism and Machine Theory, 103, 167-173.

Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221, 582-593. doi:10.1098/rsta.1921.0006.

Hong, Y., Liu, X., Lei, Z., & Sun, C. (2015). The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels. International Journal of Fatigue, 89, 108-118.

Inglis, C.E. (1913). Stresses in plates due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects, 55, 219-241.

Jones, I., & Rothwell, G. (2001). Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinders. Engineering Fracture Mechanics, 68(4), 435-454.

Karolczuk, A., & Macha, E. (2005). A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. International Journal of Fracture, 134(3), 267-304.

Larrosa, N., Navarro, A., & Chaves, V. (2015). Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I. International Journal of Fatigue, 74, 142-155.

Li, L., Shen, L., & Proust, G. (2015). Fatigue crack initiation life prediction for aluminum alloy 7075 using crystal plasticity finite element simulations. Mechanics of Materials, 81, 84-93.

Liberatto, A., Tonin, A., & Zabala, M. (2014). Determinación de la nucleación de grietas por fatiga en componentes de aeronaves. Recuperado de: http://sedici.unlp.edu.ar/bitstream/handle/10915/55406/Documento_completo.pdf?sequence=1

Lin, Z., Zhuang, Z., You, X., Wang, H., & Xu, D. (2012). Enriched goal-oriented error estimation applied to fracture mechanics problems solved by XFEM. Acta Mechanica Solida Sinica, 25(4), 393-403.

Liu, Y., Wu, Z., Liang, Y., & Liu, X. (2008). Numerical methods for determination of stress intensity factors of singular stress field. Engineering Fracture Mechanics, 75(16), 4793-4803.

Manonukul, A. & Dunne, F. (2004). High– and low–cycle fatigue crack initiation using polycrystal plasticity. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 460(2047), 1881-1903.

Manzoli, O., Maedo, M., Bitencourt, L., & Rodrigues, E. (2016). On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials. Engineering Fracture Mechanics, 153, 151-170.

Mughrabi, H. (2002). On “multi‐stage” fatigue life diagrams and the relevant life‐controlling mechanisms in ultrahigh‐cycle fatigue. Fatigue & Fracture of Engineering Materials & Structures, 25(8), 755-764.

Naderi, M., & Iyyer, N. (2015). Fatigue life prediction of cracked attachment lugs using XFEM. International Journal of Fatigue, 77, 186-193.

Navarro, A., & de los Rios, E. (1988). An alternative model of the blocking of dislocations at grain boundaries. Philosophical Magazine A, 57(1), 37-42.

Navarro, A., & Rios, E. (1992). Fatigue crack growth modelling by successive blocking of dislocations. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 437(1900), 375-390.

Navarro, C., Vázquez, J., & Domínguez, J. (2014). 3D vs. 2D fatigue crack initiation and propagation in notched plates. International Journal of Fatigue, 58, 40-46.

Newman, J. (1999). Analyses of fatigue and fatigue-crack growth under constant- and variable-amplitude loading [NASA Technica Report Service]. Recuperado de: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040086775.pdf

Pathak, H., Singh, A., & Singh, I. V. (2013). Fatigue crack growth simulations of 3-D problems using XFEM. International Journal of Mechanical Sciences, 76, 112-131.

Polák, J., & Man, J. (2016). Experimental evidence and physical models of fatigue crack initiation. International Journal of Fatigue, 91, 294-303.

Pratap, C., & Pandey, R. (1987). A composite crack profile model for CTOD determination—I. A theoretical analysis. Engineering Fracture Mechanics, 26(3), 357-370.

Proudhon, H., Li, J., Wang, F., Roos, A., Chiaruttini, V., & Forest, S. (2016). 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing. International Journal of Fatigue, 82(2), 238-246.

Qin, W., & Guan, C. (2014). An investigation of contact stresses and crack initiation in spur gears based on finite element dynamics analysis. International Journal of Mechanical Sciences, 83, 96-103.

Renev, A., & Prokopov, S. (2016). Development of mathematical model for detection of conditional sizes primordial cracks in LEFM and its implementation in Russian cax system. Procedia Engineering, 150, 683-688.

Richardson, C., Hegemann, J., Sifakis, E., Hellrung, J., & Terán, J. (2011). An XFEM method for modeling geometrically elaborate crack propagation in brittle materials. International Journal for Numerical Methods in Engineering, 88(10), 1042-1065.

Ritchie, R. (1986). Small fatigue cracks. Pittsburgh, PA: The Metallurgical Society.

Rodriguez, R. (2005). Análisis de la interacción de grietas en placas. Revista Mexicana de Física, 51(S1), 5-10.

Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, R., & Raabe, D. (2010). Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 58(4), 1152-1211.

Sabsabi, M. (2010). Modelado de grieta y estimación de vida en Fretting fatiga mediante el método de los elementos finitos extendido X-FEM [tesis]. Universidad Politécnica de Valencia: Valencia, España.

Schootz, W. (1996). A history of fatigue. Engineering Fracture Mechanics, 54(2), 263-300.

Srivastava, K., Arora, K., & Kumar, H. (2016). Numerical and experiment fracture modeling for multiple cracks of a finite aluminum plate. International Journal of Mechanical Sciences, 110, 1-13.

Suresh, S. (1998). Fatigue of materials (2 ed.). Cambridge, MA: Cambridge University Press.

Tanaka, K., & Mura, T. (1982). A micromechanical theory of fatique crack initiation from notches. Mechanics of Materials, 1(1), 63-73.

Vanegas, L. (2012). Materiales bajo esfuerzo “fatiga” [notas de clase]. Universidad Tecnológica de Pereira.

Wöhler, A. (1867). Wöhler's experiments on the strength of metals. Engineering, 4, 160-161.

Xie, Y., Cao, P., Liu, J., & Dong, L. (2016). Influence of crack surface friction on crack initiation and propagation: A numerical investigation based on extended finite element method. Computers and Geotechnics, 74, 1-14.

Zerbst, U. & Madia, M. (2012). Fracture mechanics model for predicting fracture strength of metallic alloys containing large second phase particles. En: ECF19- 19th European conference on fracture - Fracture mechanics for durability, reliability and safety, Kazan-Rusia (pp. 959-972). Londres, UK: European Structural Integrity Society

Zerres, P., & Vormwald, M. (2012). Finite element based simulation of fatigue crack growth with a focus on elastic–plastic material behavior. Computational Materials Science, 57, 73-79.




DOI: https://doi.org/10.21774/ing.v10i29.697

Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios